Матн 3063	Abstract Algebra	Project 3	Name:
	Prof. Paul Bailey	March 2, 2009	

Due Friday, February 20, 2009.

Copy the statement of the problem on a piece of $8\frac{1}{2} \times 11$ piece of blank computer paper, and write the solution underneath. Write neatly. Mathematics should always be written in grammatically correct English, in complete sentences.

Definition 1. Let G be a group. We say that G is abelian if gh = hg for all $g, h \in G$.

Problem 1. Let G be a group such that $g^2 = 1$ for every $g \in G$. Show that G is abelian.

Definition 2. Let G be a group and let $g \in G$. The order of G is |G|. The order of g is the smallest positive integer k such that $g^k = 1$.

Problem 2. Let G be a group of even order. Show that G has an element of order two.

Definition 3. Let G be a group and let $H \subset G$. We say that H is a subgroup of G, and write $H \leq G$, if

- (S0) H is nonempty;
- (S1) $h_1, h_2 \in H \Rightarrow h_1h_2 \in H;$
- (S2) $h \in H \Rightarrow h^{-1} \in H$.

Problem 3. Let $V = \mathbb{R}^3$; this is a group under addition. Let $T: V \to \mathbb{R}$ be given by T(x, y, z) = x + y + z. Let $W = \{\vec{v} \in \mathbb{R}^3 \mid T(\vec{v}) = 0\}$. Show that $W \leq V$.

Definition 4. Let G be a group. The *center* of G is

$$Z(G) = \{ g \in G \mid gh = hg \text{ for all } h \in G \}.$$

Problem 4. Let G be a group with a unique element $g \in G$ of order two. Show that $g \in Z(G)$.

Definition 5. Let G be a group and let $H \leq G$. The *centralizer of* H *in* G is

$$C_G(H) = \{ g \in G \mid gh = hg \text{ for all } h \in H \}.$$

Problem 5. Let G be a group, $g \in G$, and $H \leq G$. The *centralizer* of g in H is

$$C_H(g) = \{h \in H \mid h^{-1}gh = g\}.$$

Show that $C_G(g) \leq G$.

Definition 6. Let G be a group and let $g, h \in G$. The *conjugate* of h by g is $g^{-1}hg$.

Problem 6. Let G be a group and let $g, h \in G$.

(a) Show that g and h commute if and only if $g^{-1}hg = h$.

- (b) Show that $(g^{-1}hg)^n = g^{-1}h^ng$ (use induction).
- (c) Show that if $\operatorname{ord}(h) = n$, then $\operatorname{ord}(g^{-1}hg) = n$.